Workflow and Execution Parameters
Workflows can have parameters. Workflow parameters are declared in the blueprint, and each parameter can be declared as either mandatory or optional with a default value. To learn more about parameter declaration please refer to Creating your own workflow.
Viewing a workflow's parameters can be done in the CLI using the following command:
cfy workflows get my_workflow -d my_deployment
This command shows information on the my_workflow
workflow of the my_deployment
deployment, including the workflow’s mandatory parameters as well as the optional parameters and their default values.
Example: Retrieving a workflow’s parameters
$ cfy workflows get -d my_deployment my_workflow
Getting workflow 'my_workflow' of deployment 'my_deployment' [manager=11.0.0.7]
Workflows:
+--------------+---------------+-------------+------------+
| blueprint_id | deployment_id | name | created_at |
+--------------+---------------+-------------+------------+
| my_blueprint | my_deployment | my_workflow | None |
+--------------+---------------+-------------+------------+
Workflow Parameters:
Mandatory Parameters:
mandatory_parameter (this parameter is mandatory)
Optional Parameters:
optional_parameter: optional_parameter_default_value (this parameter is optional)
nested_parameter: {'key2': 'value2', 'key1': 'value1'} (this parameter is also optional)
mandatory_parameter
, and two optional parameters, one named optional_parameter
which has a default value of optional_parameter_default_value
, and another named nested_parameter
which has a complex default value.
When executing a workflow, it's required to specify values for all mandatory parameters, and it's possible to override the default values for any of the optional parameters. Parameters are passed in the CLI with the `-p` flag, and in YAML format. (Could be either a path to a YAML file or inline YAML [JSON is a subset of YAML, so inlining could also be in JSON format]).
Example: Executing a workflow with parameters
$ cfy executions start -d my_deployment my_workflow -p my_parameters.yaml
Executing workflow 'my_workflow' on deployment 'my_deployment' at management server 11.0.0.7 [timeout=900 seconds]
2014-12-04T10:02:47 CFY <my_deployment> Starting 'my_workflow' workflow execution
2014-12-04T10:02:47 CFY <my_deployment> 'my_workflow' workflow execution succeeded
Finished executing workflow 'my_workflow' on deployment'my_deployment'
* Run 'cfy events list --include-logs --execution-id 7cfd8b9c-dcd6-41bc-bc88-6aa0b00ffa62' for retrieving the execution's events/logs
my_parameters.yaml
mandatory_parameter: mandatory_parameter_value
nested_parameter:
key1: overridden_value
mandatory_parameter_value
for the mandatory_parameter
parameter, and overriding the value of the nested_parameter
parameter with a new complex value (though it could have been overridden with a non-complex value as well).
Execution parameters are the actual parameters the execution was run with. To view those in the CLI, use the following command:
cfy executions get my_execution
Both workflows and executions live in the context of a deployment - The reason that a deployment is not specified in the above command is that every execution has a unique ID (in UUID format), while workflows are referred to by name which might not be unique across deployments.
Example: Retrieving an execution’s parameters
$ cfy executions get -e 7cfd8b9c-dcd6-41bc-bc88-6aa0b00ffa62
Getting execution: '7cfd8b9c-dcd6-41bc-bc88-6aa0b00ffa62' [manager=11.0.0.7]
Executions:
+--------------------------------------+-------------+------------+----------------------------+-------+
| id | workflow_id | status | created_at | error |
+--------------------------------------+-------------+------------+----------------------------+-------+
| 7cfd8b9c-dcd6-41bc-bc88-6aa0b00ffa62 | my_workflow | terminated | 2014-12-04 10:02:22.728372 | |
+--------------------------------------+-------------+------------+----------------------------+-------+
Execution Parameters:
nested_parameter: {'key1': 'overridden_value'}
optional_parameter: optional_parameter_default_value
mandatory_parameter: mandatory_parameter_value
The workflow was executed with three parameters with the presented values. It can be seen that the optional parameter
parameter was assigned with its default value, while the nested_parameter
parameter’s value was overridden with the new complex value.
Workflow parameters might be defined as intrinsic functions.
Given a following blueprint bp
:
tosca_definitions_version: cloudify_dsl_1_5
inputs:
first_blueprint_id:
type: blueprint_id
second_blueprint_id:
type: blueprint_id
workflows:
wf:
mapping: scripts/wf.py
parameters:
blueprint_id:
type: blueprint_id
default: {get_input: first_blueprint_id}
… deployed with the inputs (provided blueprints b1
and b2
exist and are available to the user):
$ cfy deployments create -b bp -i first_blueprint_id=b1 -i second_blueprint_id=b2 d1
… one could run the wf
workflow either with the default blueprint_id
(effectively b1
):
$ cfy executions start wf -d d1
… or with the default value overwritten by the parameter declared in the params.yaml
file
(effectively b2
):
blueprint_id: {get_input: second_blueprint_id}
$ cfy executions start wf -d d1 -p params.yaml
It is also possible to pass custom parameters that weren’t declared for the workflow in the blueprint. By default, providing such parameters will raise an error, to help avoid mistakes - but if the need for such parameters arises, they can be allowed on a per-execution basis by enabling the allow-custom-parameters
flag. For a syntax reference, see the CFY CLI commands reference.